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ABSTRACT 

Our research focuses on comparing the performance of two open-source intrusion-

detection systems, Snort and Suricata, for detecting malicious activity on computer 

networks.  Snort, the de-facto industry standard open-source solution, is a mature product 

that has been available for over a decade.  Suricata, released two years ago, offers a new 

approach to signature-based intrusion detection and takes advantage of current 

technology such as process multi-threading to improve processing speed.  We ran each 

product on a multi-core computer and evaluated several hours of network traffic on the 

NPS backbone.  We evaluated the speed, memory requirements, and accuracy of the 

detection engines in a variety of experiments.  We conclude that Suricata will be able to 

handle larger volumes of traffic than Snort with similar accuracy, and thus recommend it 

for future needs at NPS since the Snort installation is approaching its bandwidth limits. 
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I. INTRODUCTION 

In spite of the many developments in network security over the past decade, the 

Internet remains a hostile environment for our networked computer systems.  According 

to the Symantec Internet Security Threat Report for 2010, “The volume and 

sophistication of malicious activity increased significantly in 2010” (Fossl, 2011).  

Attacks by worms such as Stuxnet and exploits in commonly used programs such as 

Adobe Acrobat are recent examples of the caliber and frequency of malicious activity 

that is seen being crafted with today’s technology.  It is no longer safe to ignore the 

security threats that we face, and we continue to become more and more dependent upon 

network connectivity and the Internet. 

The threats are not only to computers and hardware that we connect to the 

Internet, but to the data and information that resides within that infrastructure.  More and 

more we as a society are growing and developing our digital presence.  Beyond just our 

email, shopping habits, and bank account information, the data that is collected about us, 

that defines us, exists in this hostile network of systems; and without a commensurate 

increase in technologies to protect that data we risk compromise, theft, exploitation, and 

abuse of the data that defines our digital selves, be it our individual, personal identity or 

our corporate digital self, will cause real and significant damage in the real world. 

The Naval Postgraduate School is one such institution where information is 

processed on a large scale, stored, and transmitted over a diverse computer network.  

Information security is crucial to protect and sustain the development of critical research.  

Like many other government organizations the Naval Postgraduate School is constantly 

being probed and attacked in an attempt to penetrate the defenses and obtain the 

information within the NPS information domain.  To defend against that, NPS has built a 

robust defense architecture that monitors and guards the critical information against these 

intrusion attempts.  However this threat is not stagnant, and will continue to grow, 

change, and adapt to the current network security technologies. 
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Consequently, we must continue to advance the development of new security 

technologies to defend against the rising tide of malicious activity penetrating those 

networks.  Best practices in network security dictate that “defense-in-depth” (the strategy 

of establishing multiple layers of defense around critical infrastructure to protect the data) 

is an effective posture in defending against these attacks.  One critical aspect of network-

security monitoring is the incorporation of intrusion-detection and intrusion-prevention 

technologies within our defense-in-depth strategy (Kuipers & Fabro, 2006; Kumar & 

Panda, 2011).  An intrusion-detection system (IDS) monitors and logs the traffic that is 

traversing a network for signs of malicious or unwanted activity, and generates an alert 

upon discovery of a suspicious event. 

There are two types of intrusion-detection systems, host-based and network-

based.  A host based intrusion-detection system is a tool that resides on a network node, 

or a computer that is connected to the network.  Similar to a virus or malware scanner, it 

scans traffic destined for that particular host for signs of malicious activity, then 

generates alarms for those events.  At an enterprise scale, these host-based systems are 

widely deployed to send reports back to a centralized monitoring node where aggregation 

and study of the collective threat picture can occur.  A networked-based intrusion-

detection system is a device connected to the network in a manner similar to a network-

protocol analyzer, or “sniffer” as it is commonly called.  But it goes one step beyond 

simple packet capture and presentation to examine the contents of the packet data for 

signs of malicious activity.  A network-based intrusion-detection system monitors all of 

the network traffic and upon sensing an intrusion, sends an alarm to a monitoring console 

for further action.  Multiple network-based intrusion detection systems can be deployed 

throughout an enterprise at critical network junctures: the boundary link(s) to the Internet, 

the trunk to the VIP computer systems, the ingress and egress points for the server farm 

or data center, or the demarcation point of the enterprise wireless infrastructure. 

Intrusion detection as part of network-security monitoring involves reviewing and 

examining large amounts network traffic data. There are a number of ways to do 

network-security monitoring using intrusion-detection engines. One is to monitor 

network traffic in real time using a variety of tools that examine and interpret the traffic, 
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and output alerts as malicious traffic crosses the sensor on the network.  This real-time 

monitoring allows for an immediate response to any alarms generated by the intrusion 

detection engine.  The processing speed for real-time monitoring is bounded by the 

maximum speed of the network interface card.  Should the engine reside on a system with 

a low-capacity network interface card, the card may quickly become overloaded with 

network traffic and begin to drop packets.  The more packets that are dropped, the greater 

the chances of a malicious payload getting through the intrusion-detection layer of 

defense.  Therefore, the system running the detection engine should be capable of 

processing traffic at a speed equal or greater to the maximum capacity of the network. 

Another method is to use the intrusion-detection system engine for playback or 

non-real-time analysis of archived traffic.  This approach is more often applied to post-

incident network forensic analysis.  Where real-time monitoring of network traffic is 

bounded by the speed of the network interface card, forensic analysis of archived network 

traffic is limited by the computing hardware and the detection engine software.  It is 

during forensic analysis that we will see the greatest performance increase by increasing 

the computer’s processing ability in CPU, memory, and disk I/O speeds 

There are presently two main categories of intrusion-detection, anomaly-based 

and signature-based.  Anomaly-based detection examines the network traffic from a 

holistic perspective, looking for traffic that falls outside of what is considered normal 

activity.  Any such events are analyzed and if necessary, further investigation and 

subsequent action is taken to mitigate the anomaly (García-Teodoro, Díaz-Verdejo, 

Maciá-Fernández, & Vázquez, 2009).  Anomaly detection is good for discovering new, 

previously unknown attacks in a relatively small network environment.  Signature-based 

intrusion-detection attempts to match network traffic data to a preloaded signature 

database.  Typically, these signature rules are generated from previously discovered 

malicious traffic, but they can be custom crafted to match any sort of traffic flowing 

through the network.  Upon matching a signature rule the detection engine generates an 

alert which is subsequently sent to the analyst for further action. 

An example of a signature-based detection would be when the intrusion-detection 

system generates an alert from an attempt by an attacker to create a reverse command 
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shell to an internal server.  In this case, the attacker is attempting to gain unauthorized 

access to a protected system within the network perimeter by attempting to pass to the 

server a series of commands which would initiate a reverse connection to the attacker’s 

computer.  This type of attack could be detected by a signature-based system through the 

commands that the attacker issues.  One common command that a system scans for is 

“c:/windows/cmd.exe.”  An anomaly-based system would instead notice a command shell 

request being generated from outside of the protected server enclave.  Since this is not 

considered normal activity for the traffic that flows to and from the Internet, this would 

then be flagged as an alert.  Other examples of behavior that would trigger an anomaly-

based alert might include after-hours access by a user who normally works during the 

day, indicating possible unauthorized access; significant change in data traffic from one 

area of the network to another, indicating possible data exfiltration; or an increase in data 

communications between a growing number of workstations, indicating a possible worm 

infestation. 

In recent years, with the increase in complexity and frequency of Internet attacks, 

intrusion detection has become significantly more important to a wider audience.  

Numerous companies and organizations have been working to develop the technology 

and have produced several products, both open source and proprietary.  One of the most 

popular and widespread open-source signature-based network intrusion-detection engines 

is Snort, maintained by SourcFire (www.sourcefire.com).  Originally developed to 

monitor the application layer of network data packets, Snort was developed in 1998 by 

Martin Roesch and is based on the Libpcap library (Roesch, 2005).  The current modular 

design of Snort in today’s version was settled on in 1999 with Snort 1.5.  This modular 

design allows developers to build and add-on additional features without the need to 

rewrite the core detection engine.  Snort has become the de-facto industry standard for 

signature-based network intrusion-detection engines.  An overview of the specific 

capabilities of the Snort intrusion-detection system is in (Tenhunen, 2008). 

Almost a decade later, in 2009, the Open Information Security Foundation (OISF) 

released a new signature-based network intrusion-detection engine called Suricata.  

Suricata is also an open-source signature-based network intrusion-detection engine 
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envisioned to be the next generation intrusion-detection/prevention system engine 

(Jonkman, 2009).  Significant funding for the project comes from the Department of 

Homeland Security (DHS) Directorate for Science and Technology (S&T) Homeland 

Open Security Technology (HOST) program and the Navy’s Space and Naval Warfare 

Command (SPAWAR).  As the OISF title implies, the development framework for 

Suricata is open-source and is licensed by the GNU Public License v2 (OISF, 2011a). 

One advance that Suricata incorporates is a new Hyper-Text Transfer Protocol (HTTP) 

normalizer.  Called the HTP library and developed independently for the Suricata project 

by Ivan Ristic, it is an advanced HTTP parser developed for Suricata and the OISF that is 

designed to be “security-aware,” meaning that it is capable of examining HTTP traffic for 

the attack strategies and evasion techniques used by attackers to circumvent an intrusion-

detection system (Ristic, 2009). 

Another advance in the Suricata engine is the ability to employ native multi-

threaded operations, something more necessary as network bandwidth increases (Nielsen, 

2010).  The typical Snort installation can process network traffic at a rate of 100-200 

megabits per second before reaching the processing limit of a single CPU and dropping 

packets to compensate (Lococo, 2011).  That is because the current Snort engine is a 

single-threaded multi-stage design (Roesch, 2010) and does not perform as well as 

Suricata in a multi-threaded environment (Day & Burns, 2011). For Snort to take 

advantage of the multiple processors, one would have to start a new instance of Snort for 

each desired CPU, which could be a management challenge.  Suricata is designed from 

the outset to take advantage of operating with multiple CPUs (OISF, 2011a). This 

required development of original detection algorithms from the ground up.  Nonetheless, 

the developers intend to support the same rule language used in the Snort rules; and when 

the Suricata engine is more stable the OISF will make available Suricata’s extended 

features (OISF, 2011a). 

In Chapter II, we will review the challenges of intrusion-detection and look at 

how Suricata and Snort attempt to address these challenges.  We will examine other 

works in the field of network security that compare the differences between Suricata and 

Snort. 
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In Chapter III, we will introduce and describe our testing methodology for our 

comparison of Suricata and Snort.  We will discuss the setup of our experiments and the 

steps involved in building the testbed.  We will also introduce the supporting applications 

required to complete our experiments. 

In Chapters IV and V, we will present our results and conclusions respectively.  

We will then discuss further research that can be done to compare the two engines, and 

provide a recommendation for implementation of the Suricata intrusion-detection system. 
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II. PREVIOUS WORK 

Intrusion detection is difficult to accomplish perfectly.  With the volume of 

network traffic rapidly increasing and the number and complexity of network attacks 

increasing just as quickly, it becomes increasingly difficult for a signature-based 

intrusion-detection system to keep up with the current threats (Weber, 2001).  When a 

system fails to generate an alarm, the result could be the compromise of critical data 

within the network infrastructure.  Worse, if the system generates too many false alarms, 

the operators monitoring the system may become desensitized to the alerts and may 

ignore a genuine alert in the future. 

Four possible situations occur with alerts generated by an intrusion-detection 

system: true-positive, true-negative, false-positive, and false-negative.  The true positive 

is when the detection engine generates an alert based on the correct identification of a 

potential threat.  The true negative is when a detection engine does not generate an alert 

for normal traffic: this occurs during a benign network traffic flow.  The false positive is 

when a detection engine generates an alert for an event that is not malicious.  The most 

dangerous of conditions is the false negative when a detection engine does not alert on 

malicious traffic, thereby allowing it to enter the network without notice.  Accuracy in 

intrusion detection can be measured by the number of false positives and false negatives 

generated by the detection engine. 

There are a number of ways that false positive and false negative conditions can 

occur.  Faulty rule design, including invalid signature information or improper rule 

language, is one way, but this is rare.  Similarly, rules may be imprecise because there is 

no distinctive signature for a particular kind of attack.  These types of error would result 

in a false positive or false negative across all intrusion-detection engines using the same 

rules.  False positives and false negatives can also occur through performance problems 

with the detection engine itself.  To analyze a network traffic flow for signs of intrusion, 

the detection engine must examine every packet that traverses the network wire.  If the 

hardware fails or becomes otherwise overused, it can drop one or more packets, allowing 

a malicious packet to enter the network.  Unlike a dropped packet in a router, in an 
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intrusion-detection system a dropped packet is not discarded at the detection engine, but 

rather when an intrusion-detection engine drops a packet it passes through to the 

protected network.  This overload condition could be intentionally caused by an attacker 

for the purpose of injecting malicious traffic.  It is therefore important to measure the 

performance capability of an intrusion-detection system to ensure that the system can 

support the capacity of the network on which it is deployed. 

One means to improve performance is to split the data stream between multiple 

processing engines.  However, any malicious bits that may be residing in a traffic flow 

may get split too, resulting in neither engine matching the complete signature.  To 

mitigate this situation, either the detection engines must pass coordination information 

between each other, further increasing the computational load on the system, or the 

network traffic must be divided by a “flow-aware” network tap that can keep related data 

together. 

This research examines the Suricata intrusion-detection system (Shimel, 2010).  

By containing the multiple threads within the same detection engine, a multi-threaded 

detection engine can make intelligent decisions on how to split processing and can 

coordinate signature detection between these threads all within the same detection engine.  

Moore’s Law (Moore, 1965) predicts that computational speed doubles every eighteen 

months for single threaded processing architectures.  Multi-threaded processing can take 

advantage of that prediction.  According to Nielsen’s Law of Internet Bandwidth, we will 

also see 50% increases in network bandwidth every year (Nielsen, 2010).  The 

performance of our intrusion-detection system systems should increase as our demand for 

network bandwidth also increases.  The developers of Suricata have chosen to address 

that demand through multi-threaded processing (OISF, 2011a). 

Considering that the most computationally intensive work performed by an 

intrusion-detection engine is detection, the Suricata developers decided to use threads for 

detection.  Figure 1 gives an example with the creation of three detect threads.  Suricata 

can receive network traffic from the network interface card or from previously recorded 

network traffic from a file stored in PCAP format.  Traffic is passed through the decode 
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module where it is first decoded as per its protocol, then the streams are reassembled 

prior to being distributed between the signature-detection modules. 

 

Figure 1.   Suricata multi-thread design (From OISF, 2011c) 

The Suricata configuration file allows the user to configure which and how many 

threads, and how many CPUs will be involved in the processing of each stream.  Figure 2 

illustrates how Suricata can distribute the various modules in the processing stream 

across the different CPU cores in the computer. 

 

Figure 2.   Suricata multi-CPU affinity (From OISF, 2011c) 
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Previous work compared the performance of Snort version 2.8.5.2 to Suricata 

version 1.0.2 (Day & Burns, 2011).  Their testbed consisted of an Ubuntu 10.04 virtual 

machine hosted in a VMWare Workstation 6.5 virtual environment running on a 2.8GHz 

Quad-Core Intel Xeon CPU with 3GB of RAM.  The study examined detection engine 

speed as well as the accuracy under varying degrees of network and processor use.  CPU 

use was controlled using Cpulimit (cpulimit.sourceforge.net), network bandwidth was 

controlled using Tcpreplay (tcpreplay.synfin.net), and alert generation was stimulated by 

injecting six known malicious exploits generated using the Metasploit framework 

(www.metasploit.com).  The results show that Snort is more efficient with system 

resources than Suricata, and when operating in a multi-CPU environment, Suricata is 

more accurate due to fewer false negative alerts.  However they concluded that the 

overall performance of Suricata in a four-core environment was slower than that of Snort 

in a single-core environment when processing 2 gigabytes of previously captured 

network data. 

In April 2011, Damaye (2011b) published an online report comparing the 

accuracy of Snort and Suricata in detecting a wide variety of malicious files and 

suspicious actions.  His tests incorporated the latest versions of Suricata and Snort with 

signature rules from both the Snort Vulnerability Research Team (VRT) and Emerging 

Threats (ET).  Creating a custom application in Python specifically designed to send a 

variety of specific vulnerabilities through an intrusion-detection system via a number of 

different vectors, he attempted to measure the accuracy of both detection engines.  

During his tests he measured the number of true and false positives and negatives and 

assigned a score to Snort and Suricata for each of the tests conducted.  The results of his 

study concluded that the two rule sets (VRT and ET) worked well together but required 

tuning to be most effective.  He further concluded that while Suricata is a promising new 

technology with key features, Snort still is preferable for production environments. 

Leblond (2001) ran a series of tests to examine the performance of the multi-

threading capabilities of Suricata.  By adjusting the detect_thread_ratio and the 

cpu_affinity variables in the Suricata configuration file on a dual 6-core CPU system with 

hyper-threading enabled, he was able to achieve the best performance by reducing the 
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thread ratio to .125, which corresponded to three threads generated by Suricata in his test 

environment.  He also determined that the hyper-threading configuration caused 

variations in the performance results (30% variation between runs) and that it was 

actually best to configure the multiple threads to run on the same hardware CPU.  

Following his initial research, in February 2011 Leblond dove deeper into the workings 

of the Suricata multi-threading design.  Using a tool called Perf-tool 

(code.google.com/p/google-perftools) he was able to determine that, as the number of 

threads increased, more time was spent waiting for an available lock.  His conclusion was 

that configuring Suricata to run in RunModeFilePcapAutoFp results in a steady 

performance increase, whereas RunModeFilePcapAuto shows an initial increase, then a 

continued decrease in performance as measured by packets per second processed. 
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III. DESCRIPTION OF METHODOLOGY AND EXPERIMENTS 

Our experiments tested and compared the Suricata and Snort intrusion-detection 

engines in performance and accuracy in a busy virtual environment.  The experiments 

evaluated performance by measuring the percentage of CPU use, memory use, and 

network use.  We measured accuracy by subjecting both detection engines to malicious 

traffic in controlled tests, and comparing the alerts generated by each application. 

Traffic data for our experiments originated from a network tap located on the 

backbone of the Naval Postgraduate School (NPS) Education Resource Network (ERN).  

At the point of the network tap the NPS ERN has a bandwidth of 20 Gbps, providing a 

large “pipe” to send traffic to our intrusion-detection system.  Traffic across the NPS 

backbone averages 200Mbps per day.  We used this traffic to compare the performance 

and alerts of the virtual machine while running Snort and Suricata. 

Signatures for the experiments came from the two primary open-source intrusion-

detection system rule maintainers, the SourceFire Vulnerability Research Team (VRT) 

and Emerging Threats (ET).  The SourceFire VRT “develops and maintains the official 

rule set” for Snort (SourceFire, 2011).  Emerging Threats originally began as a 

community-authored list of rules to augment the SourceFire VRT body of rules. Initially 

considered less robust than the VRT rules, the ET rules now provide new capabilities.  

Where the VRT rule set is specifically designed to support Snort exclusively, the ET rule 

set is “platform agnostic” by design and will work on any type of open-source intrusion-

detection system application (Emerging Threats, 2011).  Both Suricata and Snort support 

the rules from VRT and ET. 

Our research questions are: 

1. Does Suricata with its multi-threaded processing perform better than Snort with 

its single-threaded processing? 

2. As CPU and memory use increase, are there differences in the number of  

dropped packets between the two engines? 

3. Will Suricata handle heavy loads better than Snort? 



 14

4. Is Suricata suitable to be implemented within the NPS production network?  At 

the time of the experiment, the NPS Information Technology Department was unsure 

whether to use Suricata and was hoping our experiments would help them to decide. 

A. EXPERIMENTAL SETUP 

Most experiments were conducted in a virtual machine running VMware ESXi 

4.1.  The server hardware was a Dell Poweredge R710 dual quad-core server with 96 GB 

of RAM.  Each CPU was an Intel Xenon E5630 running at 2.4 Ghz.  The data storage 

was accomplished through three fiber-channel attached RAID 5 configured arrays, 

supporting the relatively large network traffic capture files (PCAP files) needed to test 

the detection engines.  The server had eight 1Gbps network cards installed, with four 

reserved for the various management activities and four available for the Virtual 

Machine.  For our experiments the server was configured with two interface cards, one 

for system administration and one to capture network traffic.  The interface card attached 

to the network tap was configured in promiscuous mode to allow it to receive all of the 

network traffic.  Our virtual machine used 4 CPU cores and 16GB of RAM.  The 

operating system chosen for the experiment was CentOS 5.6 due to its popularity for 

enterprise applications and close relationship to Red Hat Enterprise Linux. 

Installation of Suricata was relatively straightforward.  Precompiled versions of 

Suricata were difficult to find due in part to the relative newness of Suricata compared to 

Snort.  So we compiled it.  To do this we had to install a number of software 

dependencies which were not included in the CentOS 5.6 distribution.  Among these 

were the Perl compatible regular expression (PCRE) libraries, packet-capture libraries 

(Libpcap) to allow the operating system to capture all of the traffic on the network, and 

YAML Libraries (libyaml) required to interpret Suricata’s YAML-based configuration 

files (Ben-Kiki, Evans, & dot Net, 2010). 

Initially, we started with version 1.0.3 of Suricata, but during the experiment the 

Suricata developers released a major version change to 1.1 beta2.  This version fixed 

several key performance and rule issues that were present in the earlier versions (OISF, 



 15

2011a).  After the initial installation the upgrade process was simple, involving only a 

download of the 1.1beta2 source code and compiling it on the system. 

Installation of Snort 2.9.0.5 on CentOS Linux distributions has a number of 

known issues, namely compatibility with the version of Libpcap that is distributed with 

CentOS prior to 5.6.  Fortunately, Vincent Cojot maintains a series of RPMs 

(precompiled software for installation on Red Hat-based Linux distributions) for Snort on 

CentOS (vscojot.free.fr/dist/snort).  Installation of Snort simply involved downloading 

the latest Snort RPM and extracting the program.  The required PCAP library was already 

installed during the Suricata install so there were no other dependencies involved.  

During the experiments the need to upgrade Snort 2.9.1 beta also became apparent due to 

the large size of our PCAP files.  Unfortunately Vincent Cojot’s RPM repository did not 

contain the latest 2.9.1 beta version of Snort at the time, so we were unable to upgrade to 

2.9.1 and conduct some of our planned tests. 

Care must be taken to ensure that the proper version of rules is downloaded for 

the corresponding intrusion-detection engine, or a significant number of errors will be 

reported during startup in Suricata, and in the case of Snort the startup process will abort 

altogether.  The VRT web site does not maintain a separate set of rules optimized for 

Suricata, so upon loading the VRT rules in Suricata we received a number of rule errors. 

We also used Pytbull, a utility written in Python and designed by Sebastian 

Damay to test and evaluate an intrusion-detection system’s ability to detect malicious 

traffic (Damaye, 2011a) by sending it sample traffic.  Installation of Pytbull was fairly 

simple considering that several of the dependencies for Pytbull were already installed for 

Suricata and Snort.  Pytbull requires Python and Scapy (www.secdev.org/projects/scapy), 

and the environment must have an FTP server and a web server available. 

To capture live traffic from the network and replay that data for static file 

analysis, the Tcpdump (tcpdump.org) and Tcpreplay (tcpreplay.synfin.net) utilities were 

also required.  Collection of the system performance data while running each of the 

experiments was accomplished using the tool Collectl (Collectl.sourceforge.net). 
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B. EXPERIMENTS 

The first experiment examined the real-time performance of each system 

independently while monitoring live backbone traffic from the NPS ERN.  Performance 

data from the CPU, RAM, and network interface was recorded, examined, and compared.  

A variation of the first experiment ran both detection engines simultaneously. 

The second experiment ran Suricata on the NPS Hamming supercomputer.  The 

NPS High Performance Computing Center operates a Sun Microsystems 6048 “blade” 

system with 144 blades and 1152 CPU cores (Haferman, 2011) running CentOS 5.4 as 

the operating system.  For our experiment we used one compute node composed of 48 

AMD Opteron 6174 12-core processors with 125GB of RAM available.  We measured 

the increased performance when running Suricata on this high-performance computer.  

The goal was to determine if it was feasible for an intrusion analyst to process stored 

network traffic significantly more quickly in such an environment. This task is important 

for our Information Technology Department as they are regularly called upon to do 

retrospective analysis of data of particular attacks. 

The third experiment measured how well each intrusion-detection system detected 

a variety of malicious packets sent to it.  This experiment was not concerned as much 

with the computational performance as with the accuracy of detection. 

Experiment One Setup 

The first experiment compared Suricata to Snort when monitoring network traffic 

at the NPS border router.  The NPS backbone connects to the Internet with a maximum 

bandwidth of 20Gbps.  Figure 3 shows the logical network diagram for Experiment One. 
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Figure 3.   Experiment One setup 

We first installed and ran each detection engine individually in the virtual 

machine environment with the combined ET and VRT rule sets.  Collectl was used to 

record the CPU, RAM, and network use of the server.  The experiments were conducted 

over approximately a 4 hour period of normal network use on the NPS backbone.  

Performance configuration settings for each detection engine were set to the default 

parameters. 

We then ran instances of both Snort and Suricata on the virtual machine at the 

same time.  This allowed us to compare the accuracy of each detection engine in 

generating alerts from the same live network traffic.  System CPU, RAM and network 

use were also recorded for this experiment, but are not a reliable indicator of the true 

intrusion-detection system load since it is unusual to run two engines on the same system 

at the same time.  We then evaluated the alert logs from each detection engine looking for 

differences. 

Experiment Two Setup 

For Experiment Two, we put Suricata on the Hamming supercomputer to measure 

the speed of processing there.  We used Tcpdump to capture a large PCAP file from the 

NPS ERN backbone.  The file was roughly 6GB and consisted of full packet data 

(obtained by tcpdump -nnvi eth0 -s0), the same type of data stored in a typical 

network archive.  To reduce the impact of disk input/output latency we copied the PCAP 

file to a RAM disk on the Hamming computer.  We ran Suricata with this large PCAP file 
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on both our Experiment One setup and on the Hamming supercomputer, and compared 

the time it took to analyze the file using the full rule set with various configuration 

settings. 

Experiment Three Setup 

The third experiment tested how accurately Suricata and Snort recognized 

malicious or irregular traffic.  Using Pytbull we generated a number of tests containing 

suspicious or malicious payloads, and sent them through the intrusion-detection systems 

to stimulate alerts.  These tests were divided into nine categories: client-side attacks, 

common rule testing, malformed traffic, packet fragmentation, failed authentication, 

intrusion-detection system evasion, shell code, denial of service, and malware 

identification.  Each category contains a number of different tests for evaluating our 

detection engines. 

Setup for this experiment required two additional machines: one to generate the 

test traffic (Client), and one to host an HTTP server with malicious PDF files (Hostile 

Internet web server) as illustrated in figure 4.  We used a VMWare Workstation7 virtual 

machine running Ubuntu 10.04 for the client machine, and for the web server with the 

PDF files we used a Dell Latitude laptop running Xubuntu. This test required an FTP 

service and a web server be installed and running on the intrusion-detection system 

server.  We chose to install Vsftpd for our FTP client due to its small size and ease in 

configuration.  Fortunately CentOS 5.6 already had a web server included in the base 

distribution.  To log the computational performance data we ran Collectl. 

 

Figure 4.   Experiment Three logical network diagram 



 19

For the experiment, our web server was preloaded with a variety of corrupt files.  

These files consisted of segments of observed malware from security-related sites on the 

Internet that collect these files for research purposes.  Each tainted file was hashed prior 

to distribution to ensure the integrity of the file.  For our experiment we selected some 

typical file types seen on the Internet, specifically four PDF and one XLS file. 

Running the experiment consisted of starting Collectl on our system testbed 

computer to log the performance data, then starting the Pytbull client-side remote shell 

script there.  Next we started the Httpd service on both the hostile web server and the 

intrusion-detection server.  In addition, we start the Vsftpd service on the intrusion-

detection server.  After confirming that these services were running, we started our 

detection engine, either Snort or Suricata.  Once the detection engine was loaded and 

listening to the network interface, we ran Pytbull from out testing client, pointing it at the 

address of our intrusion-detection system.  The application completed the battery of tests, 

exited, and generated an HTML report listing the exploits that were attempted and the 

alert response from the intrusion-detection system if any.  Then we stopped the HTTP 

services and the intrusion-detection services. 
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IV. DISCUSSION OF RESULTS 

Our experiments occurred over several days.  As the experiments progressed we 

ran into a few issues while tuning Suricata in the virtual environment.  We encountered 

an apparent upper limit in the amount of RAM that applications can use in a 32-bit 

operating system.  As a result we were unable to load the entire combined ET and VRT 

rule set (more than 30,000 rules) in our 32-bit CentOS 5.6 operating system.  The 

limitation is due to a 4GB memory limit for running both applications and the kernel in 

32-bit Linux operating systems.  (Suricata if compiled on a 64-bit operating system could 

take advantage of up to 48GB of RAM and could accommodate over 30,000 rules.)  As a 

result, for our experiments we had to reduce the number of rules to a combination of ET 

and VRT rules totaling 16,996 signatures.  The list of rule files used in our experiments 

can be found in Appendix B Annex 1. 

We also ran into a problem with keeping up with network traffic, which limited 

our ability to effectively measure the accuracy of both the Snort and Suricata detection 

engines.  While in promiscuous mode, the kernel was unable to buffer the entire network 

stream as it was passed from the network interface card.  Using Tcpdump, we first saw 

dropped packets at rates of up to 50%, and both Suricata and Snort indicated high 

numbers of dropped packets in their log files.  Considering the commonality of the high 

rate of packet drops, we concluded that the cause was in the virtual networking 

environment of the ESXi server.  Attempting to mitigate this problem, we adjusted 

several kernel settings on the server to increase the memory allocated to the networking 

buffer.  The default buffer settings appear to be insufficiently large to accommodate the 

volume of traffic on the NPS network backbone.  The following commands were used to 

increase the kernel buffer sizes. 

sysctl -w net.core.netdev_max_backlog=10000 

sysctl -w net.core.rmem_default=16777216 

sysctl -w net.core.rmem_max=33554432 

sysctl -w net.ipv4.tcp_mem=’194688 259584 389376’ 

sysctl -w net.ipv4.tcp_rmem=’1048576 4194304 33554432’ 

sysctl -w net.ipv4.tcp_no_metrics_save=1 
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With these modified kernel parameters, we reduced the packets dropped by 

Tcpdump to less than 1% (70121 packets dropped out of 7822944 packets).  While this 

did not eliminate all packet loss, it reduced it to an acceptable rate for continued testing. 

A. EXPERIMENT ONE 

The data collected from Experiment One showed that Suricata consumed more 

computational resources than Snort while monitoring the same amount of network traffic.  

Figures 5 and 6 graph the virtual server CPU use of both Snort and Suricata while 

monitoring the backbone interface.  CPU use for Snort is 60–70 % for one CPU while 

Suricata maintains an average in the 50–60% range across all four CPUs...but Suricata 

uses each individual CPU at a rate less than that of Snort.  
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Figure 5.   Suricata CPU Use 
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Figure 6.   Snort CPU Use 

Our data showed that Suricata was more memory-intensive than Snort.  As 

illustrated in Figure 7, system memory use increased starting at approximately 1.5 Gbytes 

and increased to just over 3 Gbytes before tapering off near 3.3 Gbytes.  Snort’s memory 

usage was relatively low, starting at only 0.8 Gbytes and remaining below 1.0 Gbytes for 

the entire test period, as shown in Figure 8. 
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Figure 7.   Suricata RAM Use 
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Figure 8.   Snort RAM Use 

Network performance remained an issue for our tests with Snort.  While we were 

able to reduce the packet drop rate in Tcpdump to less than 1%, the output log from Snort 

reported a packet drop rate of 53%.  Suricata, on the other hand, had a drop rate of 7%.  

The Snort log file further classifies the dropped packets as “outstanding packets,” 

meaning packets that are dropped before being received by the packet processing engine 

in Snort (Watchinski, 2010).  Our data showed that the number of outstanding packets in 

Snort matched the number of dropped packets in Snort, indicating that the loss of packets 

occurred prior to packet capture, and is therefore not a function of the processing load of 

the detection engine itself.  Suricata does not break down the composition of dropped 

packets in the same manner as Snort, so the same deduction cannot be assumed solely by 

the log files.  Further investigation and research should be conducted to determine why 

there is a disparity between the rate of dropped packets in Tcpdump, Suricata, and Snort. 

Network performance during the first experiment was not comparable since the 

detection engines were not monitoring the same network traffic at the same time.  The 

average packet rate during the Suricata period was 33,731 packets per second, and during 

the Snort period was 20,090 packets per second.  Figures 9 and 10 illustrate the observed 

packet rate variation between the Snort and the Suricata. 
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Figure 9.   Suricata Packet Rate 
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Figure 10.   Snort Packet Rate 

Experiment One also measured the alerts generated by Suricata and Snort running 

simultaneously on the same system.  Figure 11 and Appendix A, Annex 1, compare the 

alerts generated by the two detection engines. 
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Figure 11.   Suricata and Snort Combined Alert Frequency
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The data show that for most rules Suricata generated more alerts than Snort on the 

same network traffic.  Though both engines loaded the same rule sets, we did get error 

messages and some rules may have failed to load successfully on one engine.  Other 

reasons could be a bug in the implementation of the rule on an engine, or a problem in the 

algorithm used to analyze the traffic.  Further study at the packet level would be 

necessary to determine exactly what happened in each case. 

B. EXPERIMENT TWO 

Experiment Two ran Suricata on the Hamming supercomputer.  We tested a 

number of configuration settings for the number of processing threads and the run mode.  

Installation of Snort and Suricata on Hamming was straightforward, with the only 

difference from Experiment One being the relocation of the libraries and binaries to a 

user-accessible directory.  For these experiments, we used a 6GB Libpcap file previously 

generated from NPS backbone traffic.  We did not study the accuracy of the alerts for this 

experiment, only the relative difference in processing performance. 

We adjusted three parameters in the Suricata configuration file to tune the 

performance: detect_thread_ratio, max-pending-packets, and run mode (OISF, 2010). 

• The detect_thread_ratio value determines the number of threads that 

Suricata will generate within the detection engine.  Detect_thread_ratio is 

multiplied by the number of CPUs available to determine the number of 

threads.  The default detect_thread_ratio in Suricata is 1.5.  In our 

experiments we used values from .1 through 2.0. 

• The max-pending-packets value determines the maximum number of 

packets the detection engine will process simultaneously.  There is a 

tradeoff between caching and CPU performance as this number is 

increased.  While increasing this number will more fully use multiple 

CPUs it will also increase the amount of caching required within the 

detection engine.  The default for max-pending-packets is 50.  In our 

experiments we increased this value by an order of 10 for each iteration up 

to 50,000. 
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• The runmode value determines how Suricata will handle the processing of 

each thread.  There are three options: single, auto, and autofp.  Single 

instructs Suricata to operate in single-threaded mode.  In auto mode 

Suricata takes packets from a single flow and distributes them among the 

various detect threads.  In autofp mode all packets from a single flow are 

assigned to a single detect thread. 

Results from our experiment showed that with 48 CPUs the difference between 

the performance in the auto and autofp runmode increased as we increased the max-

pending-packets variable across all detect_thread_ratio settings.  We found that the 

detect_thread_ratio setting had minimal impact on performance in either the auto or 

autofp runmode regardless of the max-pending-packets setting.  Figure 12 illustrates the 

performance difference between the auto and autofp runmode averaged across all of the 

detect_thread_ratio settings as measured in thousands of packets per second. 
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Figure 12.   Suricata runmode performance for 48 CPUs 

On our 4-CPU virtual machine testbed running Suricata we did not see the same 

performance increase observed on the 48 CPU Hamming computer when adjusting the 

max-pending-packets. As Figure 13 illustrates, our observations showed that running in 

AutoFP runmode on a 4 CPU machine incurs a performance penalty over the Auto 

runmode.  Performance for both AutoFP and Auto runmodes averaged around 19,000 

packets per second. 
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Figure 13.   Suricata runmode performance for 4 CPUs 

Our 6GB Libpcap file consisted of nearly 8 million packets with an average size 

of 803.6 bytes each.  Based on these average statistics, the minimum packets per second 

processed by Suricata in Figure 13 equates to 108 Mbps, and the maximum packets per 

second on the Figure corresponds to 854 Mbps. 

Unlike operations on the 48-CPU Hamming, we did observe an improvement in 

performance of the Auto runmode as we increased the detect_thread_ratio resulting in an 

increase in the number of threads.  In Figure 14 we see that the noticeable drop in 

performance at 8 threads while in the AutoFP runmode is the result of limited system 

memory causing the operating system to begin using the hard drive swap space to 

augment the RAM. 
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Figure 14.   Suricata detect thread ratio performance 4-CPU 



 30

C. EXPERIMENT THREE 

Experiment Three evaluated the accuracy of Snort and Suricata when exposed to 

known malicious packets.  For 54 tests in 9 categories conducted against both Suricata 

and Snort, Suricata had 12 and Snort 16 false negatives where they did not detect the 

malicious traffic.  Where false negatives were observed in both Suricata and Snort, the 

most likely reason was that the rule used by both was not loaded or optimized for the 

particular threat.  In only two cases did Snort and Suricata report different results:  One 

was a client-side attack where Suricata detected all 5 tests and Snort only 3, and the other 

was in the evasion-technique attack where Snort identified that an evasion attempt was 

underway; while Suricata did not. 

False positives were more difficult to measure considering the composite nature 

of the Pytbull tests.  For example, Test 8 under the category Test Rules is a full SYN 

scan.  A true positive result would be an alert that a full SYN scan was underway.  

However a full SYN scan will itself generate a large number of more specific alerts that 

are also helpful warnings.  To address this we have created a category called “Grey 

Positive” for an alert that could be perceived as either a false positive or a true positive 

depending on the context.  If an alert clearly is a false positive, such as an alert for a 

Trojan infection during an Nmap SYN scan, then we will categorize it as a false positive.  

However, if an alert is generated for an attempted scan of the VNC protocol while 

conducting the Nmap SYN scan, the alert is an indicator of a scan, and could therefore be 

considered a “grey positive.” 

Tables 1 and 2 summarize our results.  Snort generated 10 false positives and 

Suricata 8; the difference was in the fragmented packets category where Snort had 2 false 

positives and Suricata had none.  This low number of false positives can be accounted for 

when looking at our “grey positive” category.  Snort had a total of 1168 grey positives 

and Suricata 1449.  The majority of these came from the category of evasion techniques 

because the tests consisted of five separate port scans, so the amount of traffic generated 

for this test alone was significantly more than any other test. 

Refer to Appendix A Annex 2 for a sample of the detailed results of each test. 
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Test Category 
Snort 

False - 

Snort 

False + 
Snort 

Grey + 

Snort 

True + 

Snort 

Other 

Client Side Attacks 5 0 0 0 10 

Test Rules 0 4 61 11 7 

Bad Traffic 2 0 5 0 3 

Fragmented Packets 3 2 0 0 4 

Multiple Failed Logins 0 0 0 3 3 

Evasion Techniques 1 3 1640 13 20 

Shell Codes 4 1 9 16 13 

Denial of Service 0 0 5 1 1 

PCAP Replay 1 0 0 0 1 

Total 16 10 1168 44 62 

Table 1.   Summary of Snort Alerts 

 

Test Category 
Suricata 

False - 

Suricata 

False + 
Suricata 

Grey + 

Suricata 

True + 

Suricata 

Other 

Client Side Attacks 0 0 9 16 16 

Test Rules 0 4 68 12 12 

Bad Traffic 2 0 5 0 6 

Fragmented Packets 3 0 4 2 9 

Multiple Failed Logins 0 0 4 0 2 

Evasion Techniques 2 3 1275 12 29 

Shell Codes 4 1 4 38 25 

Denial of Service 0 0 5 1 2 

PCAP Replay 1 0 0 0 2 

Total 12 8 1449 81 103 

Table 2.   Summary of Suricata Alerts 

In calculating the recall and precision for our experiment, we calculated both a 

pure precision, consisting of only false and true positive, and a realistic precision, which 

combined the false and grey positives.  Table 3 shows the recall and precision for our 

tests. 
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Application Recall Precision 

Snort .73 .81 

Snort (grey and false +)  .036 

Suricata .87 .91 

Suricata (grey and false +)  .052 

Table 3.   Snort and Suricata Recall and Precision 

We now give an analysis of the detection success in each category of attack. 

• Client-Side Attacks – These tests simulated the actions of a user 

downloading an infected file from the Internet.  We conducted 5 Client 

Side Attack tests where we downloaded 4 infected PDF files and 1 

infected XLS file across our network and through the intrusion-detection 

system.  In all 5 cases Suricata generated true-positive alerts from the 

malicious downloads.  On the same rule set Snort did not generate any 

alerts.  There were a number of additional alerts that were false positives 

generated during the test including alerts for a file transfer (a necessary 

function of the Pytbull application to record the alert data), a tilde 

character in the URI, and a successful FTP login (a necessary function 

used by Pytbull to retrieve the alert data). 

• Test Rules  – This test evaluated how well the detection engine responded 

to a variety of different probes into a network.  Included are Local File 

Inclusion (LFI) attacks, various network scans, SQL injections, and 

reverse shell attempts.  For these tests Pytbull used HTTP requests, along 

with the Nmap, Netcat, and Nikto applications.  Both Suricata and Snort 

generated a number of true positive and false positive alerts for the test 

traffic.  In test number 9 Pytbull generates an Nmap full-connect scan 

across all 65535 ports.  While this was correctly identified and alerted by 

both Suricata and Snort as an Nmap scan, both detection engines also 

generated an alert for a potential VNC scan of ports 5800-5820, which is 

understandable since Nmap is scanning VNC ports too.  During the same 
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scan both Suricata and Snort generated a false positive alert for a possible 

network Trojan attack, which was in fact not occurring.  While these false 

positive alerts reflected a valid event (scanning of VNC ports), they could 

be a distraction from the larger overall picture that the entire network was 

being scanned. 

• Bad Traffic  – These tests consisted of malformed network packets in 

which either the flags in the TCP header were not set correctly or the type 

of packet did not match its header.  This test used Nmap and Scapy to 

generate malformed packets.  Both Suricata and Snort only alerted on 1 

out of the 3 malformed packet tests, and neither generated an alarm on the 

Scapy-modified packets.  The first packet was a common “Xmas scan” 

generated by Nmap; the second used Scapy to modify the IP protocol flag 

to indicate version 3; and the third changed the source and destination port 

to the same number. 

• Fragmented Packets  –  For these tests Pytbull implemented two types of 

fragmented packet attacks, a Ping-of-Death attack where the packet 

fragments when reassembled are larger than allowed in the protocol 

specification, and a Nestea attack where the order of reassembly is out of 

sequence.  Both Suricata and Snort were unable to detect the Nestea 

attack, and Snort generated a false-positive alert for an outbound SSH 

scan.  Suricata alone detected the Ping-of-Death attack. 

• Multiple Failed Logins  Using a known bad username and password 

combination, Pytbull attempted to log into the server multiple times.  

Suricata generated a false positive alert for each of these attempts as a 

regular login attempt but not as a failed attempt.  Snort generated an “FTP 

Bad Login” alert for each one. 

• Evasion Techniques  – These tests employed common techniques for 

evading detection engines.  The first two used the decoy function within 

Nmap to obscure the source address of the attacker by hiding it within a 
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number of other IP addresses.  We were unable to obtain accurate results 

from this test because our installation of Pytbull was on a virtual machine 

that performed network-address translation, so the attempts by Nmap to 

use different IP addresses resulted in the same IP address, defeating the 

evasion attempt.  The next test used hexadecimal encoding to attempt to 

evade the detection engines; neither Snort nor Suricata detected it.  Test 28 

used Nmap to generate small fragments for the TCP portion of the packets 

in an attempt to overwhelm the detection engine with reassembly tasks.  

Both detection engines were able to detect that a scan was occurring, 

however, Snort was the only one that identified the use of Nmap scripting 

and generated an appropriate alert.  In tests 29 through 38 Pytbull used the 

various evasion techniques within the Nikto web application scanner to 

attempt an evasion of the detection engine.  Both Suricata and Snort were 

effective in detecting the scans; however in only two of the tests (30 and 

36) could they identify the scan as Nikto-specific.  On all of the other tests 

both Suricata and Snort alerted on the web scanning activity but did not 

identify the scans as Nikto.  Finally, in test 39 Pytbull used JavaScript 

obfuscation to attempt evasion of the detection engines.  Snort alerted but 

Suricata did not. 

• Shell Codes –  Pytbull sent 13 different shellcode attacks through the 

detection engine.  Of the 13 attempts, Suricata detected 10 and Snort 

detected 9.  The three shell code attempts missed by Suricata were also 

missed by Snort, and were 1)” IRIX SGI + NOOP,” 2) Buffer Overflow 

Attempt, and 3) Cisco VTY creation, password creation, and privilege 

escalation.  In addition to these three, Snort also missed the “x86 setgid 0 

&& setuid 0.” 

• Denial of Service  – Denial-of-service attacks are difficult to test without 

causing a true denial of service.  Pytbull has two that it can perform.  One 

uses the utility hping to generate an ICMP ping flood to the target 

machine, and one is an attempt to attack a specific application (MSSQL in 
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this case) with a DoS attack.  We were unable to perform the hping DoS 

attack as that would have caused an actual denial of service on our 

network.  Both Suricata and Snort detected the MSSQL DoS attempt, 

however neither one identified it as a DoS-specific attack.  Instead, both 

alerted on suspicious traffic sent to the MSSQL TCP port 1433. 

• Pcap Replay – This is the replay of a previously captured malicious 

payload to test how well the intrusion-detection system engine can detect 

other malware.  For our test we used only one Pcap capture containing a 

sample of the Slammer worm.  In this test neither Snort nor Suricata 

detected the Slammer worm code. 

To summarize Experiment 3, when Suricata and Snort were loaded using the 

same rule set, in some cases both failed to generate alerts on known malicious traffic.  

When both failed, we can be fairly confident that this can be attributed to the rules and 

not the detection engines.  In a few cases there were discrepancies between the Snort and 

Suricata alerts.  One explanation could be differences in the implementation of the rule 

language between Snort and Suricata.  Presently Suricata version 1.1 beta 2 does not 

support the “file_data” rule keyword, and rules in the VRT rule set that use it cause an 

error when loaded.  Another explanation could be in the implementation of the detection 

algorithm within each application which could affect how the detection engine examines 

packets, but it is hard to obtain details of the implementations. 
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V. CONCLUSION 

A. DISCUSSION 

We evaluated two open-source network-based intrusion-detection systems for the 

NPS environment.  Snort is currently the de-facto standard for open-source network-

based intrusion-detection systems around the world (SourceFire, 2011).  Suricata is still 

in early stages of development but offers speed improvements and capabilities 

unavailable in Snort. 

Both Suricata and Snort are very capable intrusion-detection systems, each with 

strengths and weaknesses.  We tested Suricata and Snort on similar data to provide an 

informed recommendation to the Information Technology Department of the Naval 

Postgraduate School on whether to use Suricata as an additional layer of defense for the 

Educational Research Network.  Both Suricata and Snort performed well during tests.  

Both did have false positives and false negatives, but much of that can be attributed to 

weaknesses of the rule set used for the tests.  It was inconclusive from our tests whether 

Suricata or Snort has a better detection algorithm. 

Suricata’s multi-threaded architecture requires more memory and CPU resources 

than Snort.  We saw that the aggregate CPU use of Suricata was nearly double that of 

Snort, and Suricata used over double the amount of RAM used by Snort.  This could be 

attributed to the overhead required to manage the multiple detection threads in Suricata.  

Suricata has the advantage that it can grow to accommodate increased network traffic 

without requiring multiple instances.  Snort is lightweight and fast but limited in its 

ability to scale beyond 200-300 Mbps network bandwidth per instance.  While Snort’s 

processing overhead is less than that of Suricata, the need for multiple instances to 

accomplish what Suricata can achieve with its multi-threaded design elevates the cost to 

operate and manage a Snort environment. 

Experiment Two showed a big improvement in the performance of Suricata on 48 

CPUs, but only by increasing the configuration variable max-pending-packets while in 

the autofp run-mode. 
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Experiment Three reinforced the importance of a well-tuned rule set for a system.  

In our test, both detection engines missed several common malicious payloads that 

should have been detected.  Had the rules been properly tuned for the environment the 

false negative rate would have been less with a corresponding increase in true positive 

alerts. 

Operating an intrusion-detection system on a virtual host introduced additional 

complications.  In our experiments, we had problems with network throughput when 

monitoring the live network traffic from the 20Gbps network backbone.  Further 

investigation into the network hardware used with the ESXi server is required to diagnose 

the cause for the high number of dropped packets on Suricata, Snort and Tcpdump. 

However, operational deployment of intrusion detection in a virtual host is unnecessary at 

NPS so these issues may be moot. 

During our research the Suricata development team released three minor version 

changes (1.0.3, 1.0.4 and 1.0.5) and two beta versions (1.1 beta1 and 2) of the next minor 

version change.  Each version contained significant improvements to the previous 

version, illustrating the rapid advancement of the detection engine.  By comparison, Snort 

has been on the same production release (2.9.0.5) for 5 months.  Rapid development 

requiring frequent upgrades is not an optimal choice for a production environment 

intrusion detection, so that is a weakness of Suricata.  Nonetheless, the pace of upgrades 

is likely to slow and Suricata should be more reliable. 

B. RECOMMENDATION 

Suricata is a very capable intrusion-detection system and should be used to 

augment the existing Snort system at the Naval Postgraduate School.  The ability to use 

multi-threaded techniques in a multiple-CPU environment will give Suricata an 

advantage over single-threaded detection engines like Snort as the network throughput at 

NPS continues to increase. 

Snort is still very capable and should remain in use within the NPS production 

environment for the immediate future.   But as the actual bandwidth on the NPS ERN 

backbone continues to grow to rates greater than 200 Mbps, the single-threaded Snort 
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architecture will not be able to keep up with the network load (Lococo, 2011).  Deploying 

both Snort and Suricata today will mean an easier transition to the multi-thread design of 

Suricata as the network load begins to overwhelm the existing Snort infrastructure. 

Network intrusion-detection systems are just one security technology, and we 

must also incorporate host-based systems so that we can catch the percentage of threats 

that are missed by firewalls and other network-monitoring systems. A weakness of both 

is the reliance on signatures for detection.  While signatures will detect most of the 

known malicious traffic in an enterprise, they cannot detect something that has not been 

seen before.  For this we must additionally use anomaly-based intrusion-detection 

systems.  To support the distributed deployment of intrusion-detection systems Suricata 

should consider incorporating SNMP traps as an additional means to deliver alerts to the 

event management console. 

C. FUTURE RESEARCH 

There are a number of areas for future research involving intrusion detection.  As 

attempts to compromise our information become more and more complex, it will become 

more difficult to detect these new threats.  As we increase the number of sensors 

distributed throughout our networks, the task of managing and correlating the information 

produced by these sensors grows.  If we are to be effective at monitoring our networks 

and guarding the information that resides therein, we must make a concerted effort to 

become aware of everything on the network.  Alert and event correlation is a step in that 

direction, and improving how we monitor and interpret that information is worthy of 

future research. 

Within the intrusion-detection category specifically, additional research should be 

performed in the incorporation of signature and anomaly-based intrusion detection to 

meet the unknown and persistent threats to our information and data infrastructure.  

Presently the two technologies are usually separate and require independent 

implementations.  Future research should address the integration of both signature and 

anomaly-based intrusion detection into a unified and seamless solution. 
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APPENDIX A 

ANNEX 1 TABLE OF COMBINED SURICATA AND SNORT ALERTS 

DURING TESTING 

The following table is a summary of the alerts generated during the variation of 

experiment 1: the combined run of Suricata and Snort while observing the same ERN 

network traffic.  The SID is the Snort ID number of the rule associated with the 

description in the next column.  The Difference column is the difference between the 

number of alerts generated by Suricata and Snort, and is represented as a percentage in 

the last column.  This data was collected over a 4 hour period where both detection 

engines were started and stopped within one second of each other. 

 

SID Alert Description

Suricata 

Alerts

Snort 

Alerts Difference %

382  ICMP PING Windows 805 791 14 2%

384  ICMP PING 13112 11986 1126 9%

408  ICMP Echo Reply 13115 11989 1126 9%

449  ICMP Time-To-Live Exceeded in Transit 13122 11996 1126 9%

527  GPL SCAN same SRC/DST 12940

2189  GPL MISC IP Proto 103 PIM 16481 16229 252 2%

2000328  ET POLICY Outbound Multiple Non-SMTP Server Emails 16842 16535 307 2%

2001328  ET POLICY SSN Detected in Clear Text (dashed) 16844 16536 308 2%

2001375  ET POLICY Credit Card Number Detected in Clear (16 digit spaced) 36100 23396 12704 35%

2001376  ET POLICY Credit Card Number Detected in Clear (16 digit dashed) 36101

2001377  ET POLICY Credit Card Number Detected in Clear (16 digit) 36400 23571 12829 35%

2001378  ET POLICY Credit Card Number Detected in Clear (15 digit) 36411 23578 12833 35%

2001379  ET POLICY Credit Card Number Detected in Clear (15 digit spaced) 36414

2001381  ET POLICY Credit Card Number Detected in Clear (14 digit) 36414 23579 12835 35%

2001384  ET POLICY SSN Detected in Clear Text (spaced) 36429 23581 12848 35%

2001402  ET POLICY ZIPPED DOC in transit 41323 27116 14207 34%

2001403  ET POLICY ZIPPED XLS in transit 45286 29724 15562 34%

2001404  ET POLICY ZIPPED EXE in transit 45369 29800 15569 34%

2001405  ET POLICY ZIPPED PPT in transit 48915 32161 16754 34%

2001978  ET POLICY SSH session in progress on Expected Port 49645 32805 16840 34%

2001980  ET POLICY SSH Client Banner Detected on Unusual Port 49646

2002658  ET POLICY EIN in the clear (US-IRS Employer ID Number) 49655 32813 16842 34%

2002752  ET POLICY Reserved Internal  IP Traffic 49656 32814 16842 34%

2003195  ET POLICY Unusual  number of DNS No Such Name Responses 49726 32879 16847 34%

2003292  ET WORM Allaple ICMP Sweep Ping Outbound 49731

2003864  ET POLICY Outbound SMTP on port 587 49733 32881 16852 34%

2008581  ET P2P BitTorrent DHT ping request 49734 32882 16852 34%

2009702  ET POLICY DNS Update From External  net 49981 33120 16861 34%

2011368  ET SCAN TCP Traffic (ET SCAN Malformed Packet SYN RST) 50030 33164 16866 34%

2011540  ET POLICY OpenSSL Demo CA - Internet Widgits Pty (O) 50031 33166 16865 34%

2100382  GPL ICMP_INFO PING Windows 50836 33957 16879 33%

2100384  GPL ICMP_INFO PING 63141 45942 17199 27%

2100408  GPL ICMP_INFO Echo Reply 63144 45944 17200 27%

2100449  GPL MISC Time-To-Live Exceeded in Transit 63151 45950 17201 27%

2100466  GPL ICMP L3retriever Ping 63261 46060 17201 27%

2100480  GPL ICMP_INFO PING speedera 74651 57143 17508 23%

2100485  GPL ICMP_INFO Destination Unreachable Communication Administratively Prohibited 119536 100348 19188 16%

2100486  GPL ICMP_INFO Destination Unreachable Communication with Destination Host is Administratively Prohibited 120045 100832 19213 16%

2100487  GPL ICMP_INFO Destination Unreachable Communication with Destination Network is Administratively Prohibited 120045 100832 19213 16%

2101620  GPL POLICY TRAFFIC Non-Standard IP protocol 101343

100000158  GPL VOIP SIP INVITE message flooding 101344

Comparison of Snort and Suricata Alerts  07/27
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ANNEX 2 EXAMPLE PYTBULL REPORTS FOR SURICATA AND 

 SNORT 

Category: Client Side Attacks 

Test 4: Corrupt PDF File (CVE2009-4324) 

Snort False Negative:  Both alerts generated by Snort in this example are due to 

the Pytbull process of obtaining the alert data from the intrusion-detection system.  

Neither alert relates to the exploited PDF file that was transmitted in Test 4. 

 

Suricata True Positive:  Suricata generated an alarm based on the PDF file 

containing JavaScript. 

 

Category: Test Rules 

Test #6: Simple LFI Attack 
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Snort True Positive:  Snort generated an alert based on the ‘/etc/passwd’ string 

passed through an HTTP command.   

 

Suricata True Positive: Suricata generated an alert based on the ‘/etc/passwd’ 

string passed through an HTTP command.   
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APPENDIX B 

ANNEX 1 EMERGING THREATS (ET) AND VULNERABILITY RESEARCH 

TEAM (VRT) RULE CATEGORIES USED IN EXPERIMENTS. 

 

 - emerging-all.rules  - policy.rules 

 - attack-responses.rules  - pop2.rules 

 - backdoor.rules  - pop3.rules 

 - bad-traffic.rules  - rpc.rules 

 - blacklist.rules  - rservices.rules 

 - botnet-cnc.rules  - scada.rules 

 - chat.rules  - scan.rules 

 - content-replace.rules  - shellcode.rules 

 - ddos.rules  - smtp.rules 

 - dns.rules  - snmp.rules 

 - dos.rules  - specific-threats.rules 

 - exploit.rules  - spyware-put.rules 

 - finger.rules  - sql.rules 

 - ftp.rules  - telnet.rules 

 - icmp-info.rules  - tftp.rules 

 - icmp.rules  - virus.rules 

 - imap.rules  - voip.rules 

 - info.rules  - web-activex.rules 

 - misc.rules  - web-attacks.rules 

 - multimedia.rules  - web-cgi.rules 

 - mysql.rules  - web-client.rules 

 - netbios.rules  - web-coldfusion.rules 

 - nntp.rules  - web-frontpage.rules 

 - oracle.rules  - web-iis.rules 

 - other-ids.rules  - web-misc.rules 

 - p2p.rules  - web-php.rules 

 - phishing-spam.rules  - x11.rules 
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